

Introduction LCA

BIM-LCA training activity

Life cycle assessment (LCA)

Assessment of environmental impact througout the value chain from raw materials extraction, transport, processing, use and end of life

Functional unit for comparision

- Coca-Cola known for first LCA
- > Energy accounting
- > Compare beverage containers
- > Plastic better than perception
- > Aluminium recycling important

(1) Østfold University College

General LCA methods

Lars Tellines Mepartment of Engineering

- Standardised with ISO 14044 as general method
- VN Environment initiative: <u>https://www.lifecycleinitiative.org/</u>
- European Commission plattform for LCA: <u>https://eplca.jrc.ec.europa.eu/</u>

Figure 1

Framework for life cycle assessment (from ISO

Co-funded by the European ଫଳଟନ

02.02.2023

LCA for carbon footprint

Figure [1.1] Overview of GHG Protocol scopes and emissions across the value chain

Co-funded by the European Union

Environmental product declarations (EPD)

- Results of LCA for one product
- > Objective and verified
- > Several standards available

Eier av deklarasjonen	Marnar Bruk AS
Utgiver	Næringslivets Stiftelse for Miljødeklarasjoner
Deklarasjonens nummer	NEPD00294N
Godkjent dato	16.12.2014
Gyldig til	16.12.2019
Royalimpregnert trelas	st
Produkt	
Marnar Bruk AS	MARNAR BRU
Eier av deklarasjon	
Eier av deklarasjon	
Eier av deklarasjon	

Environmental product declarations (EPD)

* EPD Programmes not previously surveyed so no data provided before 2019.

Co-funded by the European ଫଳାଫଳ

LCA in EPD, many impact indicators

Indikator	Enhet	A1	A2	A3	A1- A3
GWP-total	kg CO2 ekv.	5,93E+00	2,14E+00	1,81E+00	9,87E+00
GWP-fossil	kg CO2 ekv.	2,15E+01	2,13E+00	1,76E+00	2,54E+01
GWP-biogent	kg CO2 ekv.	-1,56E+01	1,82E-03	3,85E-02	-1,56E+01
GWP-LULUC	kg CO2 ekv.	2,32E-02	8,56E-04	6,22E-03	3,02E-02
ODP	kg CFC11 ekv.	2,67E-06	4,98E-07	1,12E-07	3,28E-06
AP	mol H⁺ ekv.	1,37E-01	1,74E-02	1,97E-02	1,74E-01
EP-ferskvann	kg P ekv.	9,16E-04	1,35E-05	9,73E-05	1,03E-03
EP-marint	kg N ekv.	2,82E-02	4,74E-03	2,27E-03	3,52E-02
EP-terrestrisk	mol N ekv.	3,42E-01	5,25E-02	2,90E-02	4,24E-01
POCP	kg NMVOC ekv.	1,07E-01	1,52E-02	8,33E-03	1,30E-01
ADP-M&M	kg Sb ekv.	2,77E-04	4,58E-06	2,76E-04	5,58E-04
ADP-fossil	MJ	3,49E+02	3,24E+01	1,93E+01	4,00E+02
WDP	m³	1,67E+01	1,04E-01	5,76E-01	1,74E+01

Ressursbruk

VESSUI SDI UK								
Parameter	Enhet	A1	A2	A3		A1 A3	 3	
RPEE	MJ	2,29E+02	3,90E-0	1 7,53E+	00	2,37E	+02	
RPEM	MJ	2,67E+02	0,00E+0	0 0,00E+	00	2,67E	+02	
TPE	MJ	4,96E+02	3,90E-0	1 7,53E+	00	5,04E	+02	
NRPE	MJ	3,49E+02	3,24E+0	1 1,93E+	01	4,00E	+02	
NRPM	MJ	2,96E+01	0,00E+0	0 0,00E+	00	0,00E	+00	
TRPE	MJ	3,49E+02	3,24E+0	1 1,93E+	01	4,00E	+02	
SM	kg	0,00E+00	0,00E+0	0 0,00E+	00	0,00E	+00	
RSF	MJ	0,00E+00	0,00E+0	0,00E+00		0,00E	+00	
NRSF	MJ	0,00E+00	0,00E+0	0 0,00E+	00	0,00E	+00	
W	m3	4,77E-01	3,61E-03	3 3,59E-	02	5,16E	-01	
Indikator	Enhet	A1	A2	A3	A	A1- A3		
EP- ferskvann*	kg PO4 ekv.	1,50E-02	1,82E-03	1,27E-03	1,1	81E-02		
GWP-IOBC	$\log{\rm CO_2}$ ekv.	2,15E+01	2,13E+00	1,77E+00	2,5	4E+01		
GWP-BC	kg CO2 ekv.	-1,56E+01	1,82E-03	3,85E-02	-1,	56E+01		
GWP	kg CO_2 ekv.	5,93E+00	2,14E+00	1,81E+00	9,8	87E+00		

Supplerer	nde indikatorer	for n	niljøpå	åvirkn	ing	leg
Indikator	Enhet	A1	A2	A3	A1-A3	
РМ	Sykdomstilfeller	2,03E-06	2,25E-07	1,68E-07	2,43E-06	
IRP	kBq U235 ekv.	7,81E-01	1,40E-01	6,05E-02	9,82E-01	
ETP-fw	CTUe	5,94E+02	2,47E+01	1,25E+02	7,44E+02	
HTP-c	CTUh	1,87E-07	7,85E-10	1,06E-08	1,98E-07	
HTP-nc	CTUh	3,72E-07	2,59E-08	1,84E-07	5,82E-07	
SQP	Pt	1,20E+03	3,33E+01	7,43E+01	1,31E+03	

Livsløpets slutt - Avfall

Parameter	Enhet	A1	A2	A3	A1- A3			
HW	KG	7,34E-04	7,28E-05	8,46E-05	8,92E-04			
NHW	KG	2,05E+01	2,87E+00	5,99E+00	2,94E+01			
RW	KG	7,57E-04	2,20E-04	5,78E-05	1,04E-03			
HW Avhendet farlig avfall; NHW Avhendet ikke-farli								

Livsløpets slutt – Utgangsfaktorer

Parameter	Enhet	A1	A2	A3	A1- A3	
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
MR	kg	0,00E+00	0,00E+00	2,22E-03	2,22E-03	
MER	kg	0,00E+00	0,00E+00	6,53E-02	6,53E-02	
EEE	MJ	0,00E+00	0,00E+00	2,87E-02	2,87E-02	/
ETE	MJ	0,00E+00	0,00E+00	3,16E-01	3,16E-01	າ Unio

Digital EPD data – from January 2019 EPD data will also be machine readable

Co-funded by the European Union

Atributional and consequential LCA

Attributional

Consequential

Illustration: Weidema (2003)

Co-funded by the European ଫଳଫଳ

Co-funded by

the European Union

Inventory

Inventory based on database of background data

Co-funded by the European ଫାଲିଡିନ

Unit process

Figure 6 Multifunctional process with several input products and resources consumed and various wastes and emissions generated as well as providing the two co-products 1 and 2.

(1) Østfold University College

Example LCI data forestry in ecoinvent

Exchange summary

• •			
Reference product	Byproduct classif.	Amount	
sawlog and veneer log, softwood, measured as solid wood under bark	allocatable product	1 m3	
Inputs from technosphere		Amount	
diesel, burned in building machine		15.8 MJ	
forwarding, forwarder		0.0488 hour	
gravel, crushed		9.34 kg	
harvesting, forestry harvester		0.0979 hour	
power sawing, without catalytic converter	0.106 hour		
skidding, skidder	0.00134 hour		
tree seedling, for planting	11.3 unit		
Inputs from environment	Amount		
Carbon dioxide, in air		8.88e+2 kg	
Energy, gross calorific value, in biomass		1.00e+4 MJ	
Occupation, forest, intensive		1.87e+3 m2*year	
Occupation, traffic area, rail/road embankment	7.12 m2*year		
Transformation, from forest, intensive	23.4 m2		
Transformation, from traffic area, rail/road embankment	0.089 m2		
Transformation, to forest, intensive	23.4 m2		
Transformation, to traffic area, rail/road embankment		0.089 m2	
Wood, soft, standing	1 m3		

Lars renewant ureparation of chaineering

Allocation – example from sawmills

The sawmill process from forest to sawn wood product

Illustration: Swedish wood

Co-funded by the European ଫଳନା

Allocation – preferably by sub division

Different allocation methods - sawmills

Lars Tel Res Mepartment of Engineering

Co-funded by the European Oracia

Co-funded by

the European Union

Impact assessment

the European Union

Different types of envrionmental impacts

Lars Tel Res Mepartment of Engineering

Characterisation factors (CF) – climate change

Elementary flow (emission)	CF 20 years	CF 100 years	
Carbon dioxide	1	1	
Methane	85	30	
Denitrogen oxide	264	265	
PFPMIE (perfluoropolymethyliso propyl ether)	7500	9710	ed by

Impact categories and robustness

EF Impact category	Impact category Indicator	Unit	Characteri- zation model	Robust -ness	formation, human health			Zelm et al, 2008) as implemented in ReCiPe 2008	
Climate change, total ²³	Radiative forcing as global warming potential (GWP100)	kg CO _{2 eq}	Baseline model of 100 years of the IPCC (based on IPCC 2013)	I	Acidification	Accumulated Exceedance (AE)	mol H+ _{eq}	Accumulated Exceedance (Seppälä et al. 2006, Posch et al, 2008)	п
Ozone depletion	Ozone Depletion Potential (ODP)	kg CFC-11 _{eq}	Steady-state ODPs as in (WMO 2014 + integrations)	I	Eutrophicatio n, terrestrial	Accumulated Exceedance (AE)	mol N _{eq}	Accumulated Exceedance (Seppälä et al. 2006, Posch et al, 2008)	п
Human toxicity, cancer	Comparative Toxic Unit for humans (CTU _h)	CTUh	USEtox model 2.1 (Fankte et al, 2017)	III	Eutrophicatio n, freshwater	Fraction of nutrients reaching freshwater end compartment (P)	kg P _{eq}	EUTREND model (Struijs et al, 2009) as implemented in ReCiPe	п
Human toxicity, non- cancer	Comparative Toxic Unit for humans (CTUh)	CTUh	USEtox model 2.1 (Fankte et al, 2017)	III	Eutrophicatio n, marine	Fraction of nutrients reaching marine end compartment (N)	kg N _{eq}	EUTREND model (Struijs et al, 2009) as	п
Particulate	Impact on human	disease incidence	PM method	I				in ReCiPe	
matter	health		by UNEP (UNEP 2016)		Ecotoxicity, freshwater	Comparative Toxic Unit for ecosystems (CTU _e)	CTUe	USEtox model 2.1 (Fankte et al, 2017)	111
Ionising radiation, human health	Human exposure efficiency relative to U ²³⁵	kBq U ²³⁵ eq	Human health effect model as developed by Dreicer et al. 1995 (Frischknecht et al, 2000)	п	Land use	 Soil quality index²⁴ Biotic production Erosion resistance Mechanical 	 Dimensionles s (pt) kg biotic production kg soil m³ water m³ 	Soil quality index based on LANCA (Beck et al. 2010 and Bos et al. 2016)	ш
Photochemica I ozone	Tropospheric ozone concentration increase	kg NMVOC _{eq}	LOTOS- EUROS model (Van	п		filtration Groundwater replenishme nt	groundwater		

Lars Tel m

https://epica.jrc.ec.europa.eu/permalink/PEF

n<u>cbଭର୍ଗ</u>by the Europeaନ ଫଳଫନ

Costs of LCA

Table 1. Results of the cost survey

T 1			Quartile (\$)		27	Width of
Task		Lower	Median	Upper	- N	range
	Scoping	485	1,693	3,375	6	2,890
R	Research and drafting	2,114	5,928	17,563	8	15,449
PC	Review	1,013	5,072	8,587	7	7,574
	Total	2,738	15,000	25,625	9	22,887
	LCA and EPD preparation	8,365	15,250	22,745	12	14,380
	Verification	2,108	2,447	3,413	12	1,305
D	Registration	663	1,312	2,629	9	1,966
EP	Initial fees other than registration	528	750	947	6	419
	Annual running fee	587	973	1,531	10	944
	Total	10,309	12,826	30,001	15	19,692
Total	of PCR and EPD	12,509	18,761	41,238	15	28,729

(Tasaki et al, 2021)

LCA software – main types

- > Excel can be used for simplifed LCA and carbon footprint
- General LCA software
 - > Databases available
 - > Possible to use different kind of impact assessment
 - > For LCA-experts and research
- > Specific LCA software
 - > Available for eco-design, EPD, building-LCA, etc.
 - > More efficient and user friendly, but less flexible and transparent

Simplified general workflow LCA

- Soal and scope read previous LCA from research
- Inventory check ecoinvent processes in Simapro, then previous LCA from research, then collect own data
- Impact assessment carbon footprint easy, ask LCA-expert if more indicators
- Interpretation always explain simply what you have found and what are the uncertainties

Sum up LCA is very usefull to quantify environmental impacts

Software makes it easier, but also easier to get wrong results

Experience and good practice is important for robust results

Thank you

Lars Tellnes | IIØ

02.02.2023 26

(1) Østfold University College

References

Dolezal, F., Môtzl, H., Spitzbart, C. (2014). Survey of allocation methods in life cycle assessments of wood based products. *Proceedings to the World Sustainable Built environment conference, October 28-30th 2014, Barcelona, Spain.*

https://www.ostfoldforskning.no/no/publikasjoner/Publication/?id=1418

Weidema, B. (2003). Market information in life cycle assessment. Environmental Project No. 863. 2.-0 LCA consultants.

Tellnes, L. G. F. & Nore, K. (2018). Environmental performance of construction stage for glue and cross laminated timber. Presentation at the 14th Annual meeting in the Northern European Network for Wood Science and Engineering (WSE), October 2-3, 2018, Tallinn University of Technology, Estonia.

EC (2010). European Commission - Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union; 2010

Tasaki, T., Shobatake, K., Nakajima, K. & Dalhammar, C. (2017). International survey of the costs of assessment for environmental product declarations. Procedia CIRP 61 (2017) 727 – 731.

Tellnes, L. G. F., Alfredsen, G., Flæte, P. O and Gobakken, L. R. (2018). Carbon footprint of decking materials – a comparison of modified and preservative treated wood. Presentation at the 9th European Conference on Wood Modification (ECWM9). Arnhem, the Netherlands, 17 – 18 September 2018

Co-funded by the European Union