

(1) Østfold University College

LCA analysis of a roof mounted PV system: A Romanian case study

LECT.PHD.ENG. TANIA RUS

Artificial Intelligence Research Institute

(1) Østfold University College

(1) Østfold University College

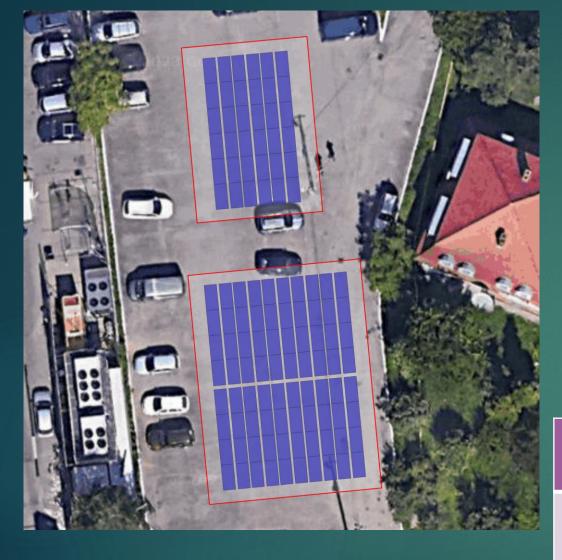
UNIVERSITATEA TEHNICĂ

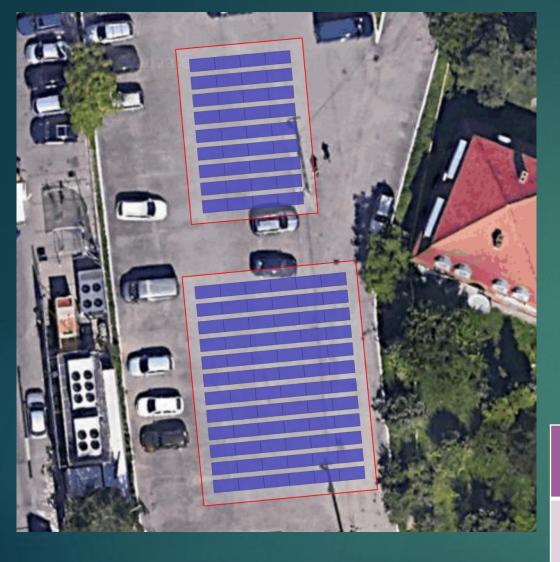
DIN CLUJ-NAPOCA

Methodology

https://base.k2systems.com K2 Base is a **free** innovative **planning tool** that enables fast, safe and accurate planning of PV projects project for **pitched and flat roofs**.

(1) Østfold University College




- ✓ The design rules comply with the basic principles of structural design: SR EN 1990/NA: 2006.
- \checkmark The snow loads are determined according to SR EN 1991-1-3/NA: 2017.
- \checkmark The wind loads are determined according to SR EN 1991-1-4/NB: 2017.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 - Actions on structures, Wind actions'.

Roof	Power	Quantity	Total power	
Roof 1	550 Wp	80	44 kWp	
Roof 2	550 Wp	36	19.8 kwp	
Total		116	63.8 kWp	

Scenario 1

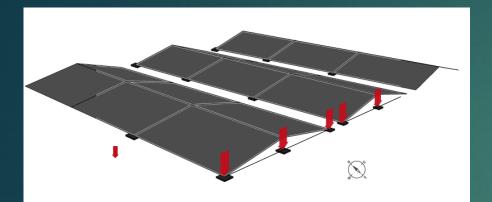
evozon

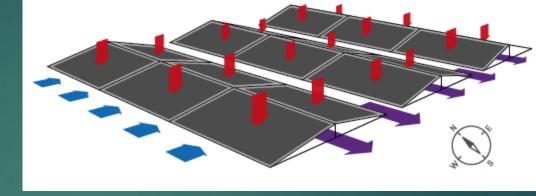
Scenario 2 South Oriented PV pa

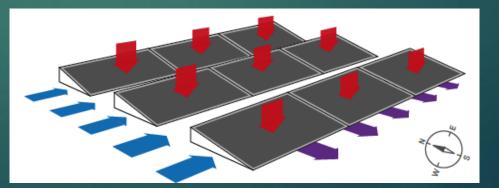
South Oriented PV panels

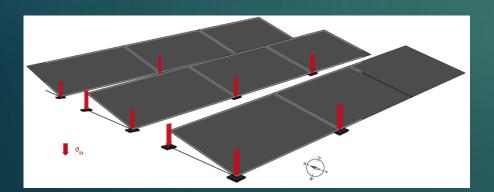
Roof	Power	Quantity	Total power
Roof 1	550 Wp	72	39.6 kWp
Roof 2	550 Wp	36	19.8 kwp
Total		108	59.4 kWp

(1) Østfold University College






Structural analysis - Scenario 1 East – West Oriented PV panels



Structural analysis - Scenario 2

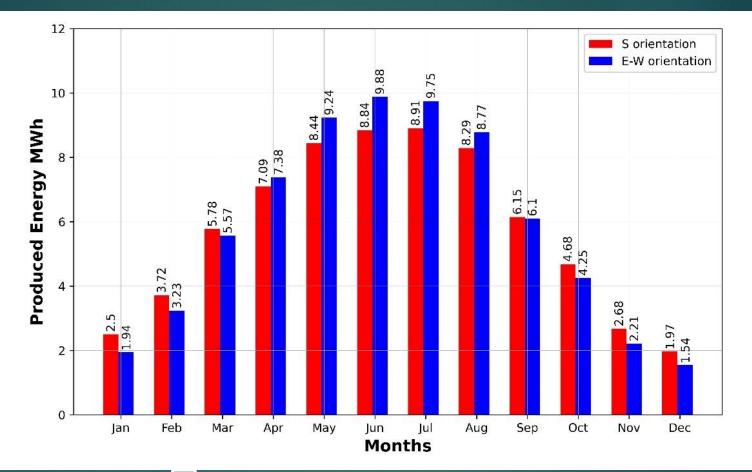
South Oriented PV panels

Loads of the PV systems on the Artificial Intelligence Research Institute building

Orientation	Placement	Aluminium structure [kg]	Ballast [kg]	Total weight per roof [kg]	Total weight [kg]
South	Top roof	365.8	2561.0	2926.8	7002.0
South	Bottom roof	697.4	4359.0	5056.4	7983.2
East-West	Top roof	192.4	258.0	450.4	1900 5
	Bottom roof	414.1	1036.0	1450.1	1900.5

(1) Østfold University College

Universidad Politécnica de Cartagena


UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

evozon

 $\hat{\boldsymbol{\Omega}}$

Energy production of the two scenarios

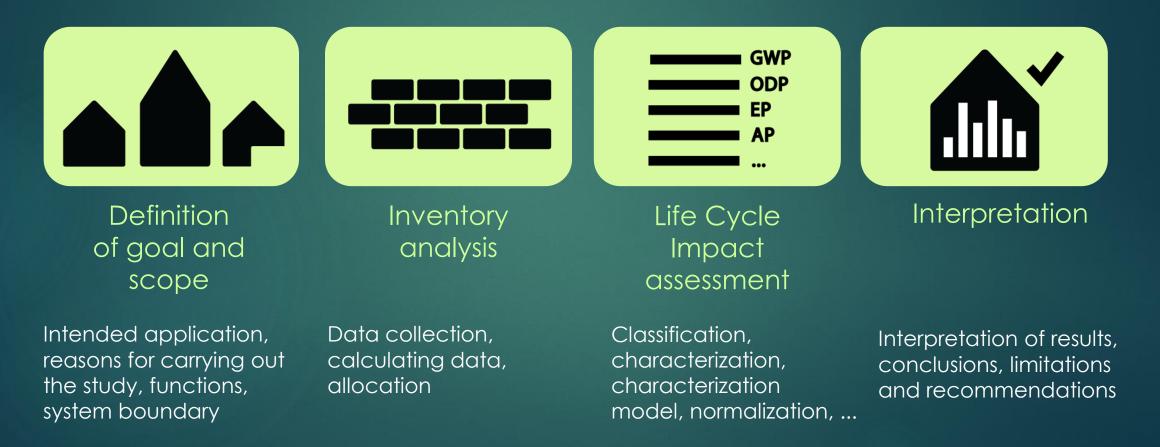
	والمتعادية الالالي المستر			
	Scenario	PV modules	Specific production [KWh/kWp/year]	Produced energy [MWh/year]
\neg	East-West	116	1095	69.86
	South	108	1162	69.04

Life Cycle Assessment

Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle.

LCA covers a broad range of environmental issues (around twelve)

> Climate change Ozone depletion Acidification Eutrofication aquatic freshwater



LCA methodology

ISO 14040:2006 Environmental management. Life cycle assessment. Principles and framework ISO 14044:2006 Environmental management. Life cycle assessment. Requirements and guidelines

	Embodied impact									Circular economy									
	S	roduc stage 1 - A3		S	struction lage 1 - A5)		Use stage (B1 - B7)				End of life stage (C1 - C4)					Beyound the building life cycle stage (D)			
	Raw material extraction	Transport	Manufacturing		n and process		e		ent	ent	ction /		cessing			Be	nefits (loads		
	Raw n extro	Tran	Manufa	Transport	Construction and installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Deconstruction / demolition	Transport	Waste processing	Disposal		Reuse	Recovery	Recycling potential	
	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	C3	C4	ļ	D	D	D	
Operational impact B6 Operational energy																			
						B7	37 Operational water					1							

Cradle to Gate

Cradle to Grave (Building life cycle information)

Cradle to Cradel (Building Assessment information)

ABOUT ONE CLICK LCA

World-leading Carbon & Life-cycle Metrics Software.

Buildings and Renovation, Infrastructure, Product EPDs, CSR **COMPLIES WITH 40+ CERTIFICATIONS**

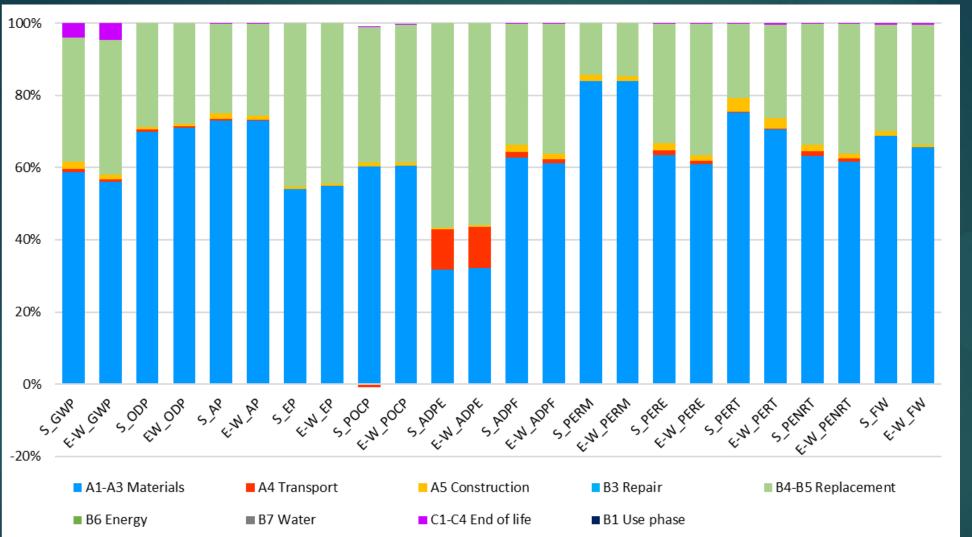
BREEAM, LEED, DGNB, HQE/ E+C-, CEEQUAL,

etc.

INTEGRATE WITH YOUR DESIGN TOOLS & 40+ DATABASE Revit, BIM, IFC file. IESVE, other tools.

Easy to use tools for construction sustainability metrics and impact reduction

(1) Østfold University College



Life cycle impacts by stage for South (S) and East-West (E-W) orientation

Co-funded by the Erasmus+ Programme

Global Warming Potential (GWP); Acidification Potential (AP); Ozone Depletion Potential (ODP); Eutrophication Potential (EP); Photochemical Ozone Creation Potential (POCP); Abiotic Depletion Potential for Fossil Resources (ADPF); Abiotic Depletion Potential for Non-Fossil Resources (ADPE); Total Use of Renewable Primary Energy Resources (PERT); Total Use of Non-Renewable Primary Energy Resources (PENRT); Renewable Primary Energy Resources as Raw Materials (PERM); Renewable Primary Energy Resources excluding Raw Materials (PERE); Net Fresh Water (FW)

LCA results for PV system

(1) Østfold University College

Universidad Politécnica de Cartagena

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

> CECEON Centro Tecnologico de la Construcción

evozon

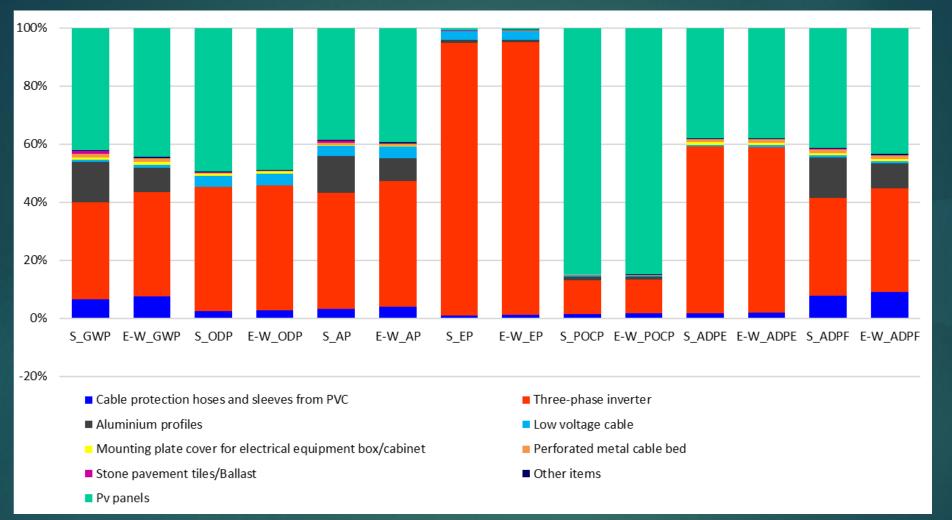
(1)

Category	Units	Orientation South	Orientation E-W	
GWPtotal	kg CO2-eq	8.32E+04	7.98E+04	
ODP	kg CFC11-eq	1.08E-02	1.11E-02	
AP	kg SO2-eq	6.16E+02	6.12E+02	
EP	kg PO4-eq	3.74E+02	3.80E+02	
POCP	kg NMVOC	2.12E+02	2.14E+02	
ADP-minerals and metals	kg Sb-eq	1.70E+01	1.72E+01	
ADP-fossil	MJ	9.18E+05	8.86E+05	
PERM	MJ	2.39E+03	2.37E+03	
PERE	MJ	8.02E+05	7.35E+05	
PERT	MJ	1.43E+05	1.23E+05	
PENRT	MJ	1.07E+06	1.03E+06	
FW	m3	2.46E+03	2.32E+03	

Contribution of PV system's components to the environmental impact indicators for South (S) and East-West (E-W) orientation

Co-funded by the Erasmus+ Programme

> Universidad Politécnica de Cartagena


(1) Østfold University College

UNIVERSITATEA TEHNICA

ctcon

evozon

of the European Union

Global Warming Potential (GWP); Acidification Potential (AP); Ozone Depletion Potential (ODP); Eutrophication Potential (EP); Photochemical Ozone Creation Potential (POCP); Abiotic Depletion Potential for Fossil Resources (ADPF); Abiotic Depletion Potential for Non-Fossil Resources (ADPE); Total Use of Renewable Primary Energy Resources (PERT); Total Use of Non-Renewable Primary Energy Resources (PENRT); Renewable Primary Energy Resources as Raw Materials (PERM); Renewable Primary Energy Resources excluding Raw Materials (PERE); Net Fresh Water (FW)

Energy PayBack Time (EPBT)

The Energy PayBack Time (EPBT) indicator serves as a valuable tool for assessing the sustainability of a photovoltaic (PV) system.

EPBT measures how long it takes for a PV system to **produce enough energy to offset the energy used** to create and install it, resulting in a net energy gain for the user. However, this indicator's calculation is **contingent on a multitude of influencing factors**, including:

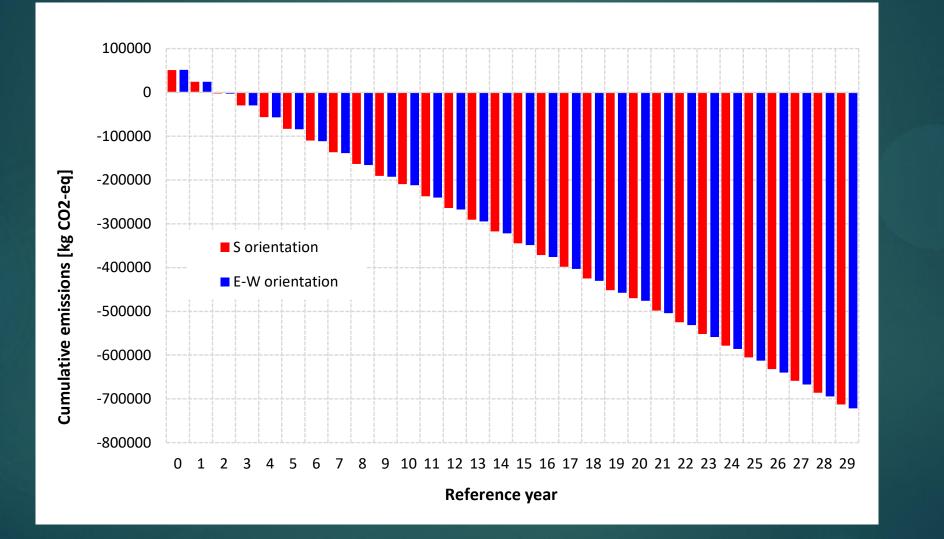
- 1. Type of PV Module;
- 2. Efficiency of conversion;
- 3. Insolation;
- 4. Performance Ratio;
- 5. Installation Type;
- 6. Support Structure;
- 7. Application;
- 8. Grid efficiency.

Energy PayBack Time (EPBT)

 $EPBT = (Emat + Emanuf + Etrans + Einst + E_{EOL})/((Eagen/\eta_G) - E_{O\&M})$

 E_{mat} - energy to produce materials [MJ oil-eq]; E_{manuf} - energy to manufacture [MJ oil-eq]; E_{trans} - energy to transport materials used during the life cycle [MJ oil-eq]; E_{inst} - energy to install the system [MJ oil-eq]; E_{EOL} - energy for end-of-life management [MJ oil-eq]; $E_{O&M}$ annual energy for operation and maintenance [MJ oil-eq]; E_{agen} - annual electricity generation [kWh]; η_{G} - the grid efficiency [kWh electricity/MJ oil-eq].

	Energy production	EPBT (consumed directly)	EPBT (injected)
	[MWh]	[years]	[years]
South	1913.72	2.54	6.36
East-West	1936.96	2.39	5.97


UNIVERSITATEA TEHNICA

Yearly global warming and benefits of PV system for South (S) and East-West (E-W) orientation

Co-funded by the

Conclusions

The **study examines two solar PV systems** – one with south-oriented panels and the other with east-west-oriented ones - and their potential and environmental impact. The outcomes obtained unveil:

- (i) The aluminium structures for hosting the modules for the E-W choice have a lower weight (606.5 kg) than the South scenario (1063.2 kg);
- (ii) The **ballast required** by the installation is **1294 kg and 6920 kg for the E-W and S** panels-oriented;
- (iii) With a configuration of **116 modules the E-W scenario has higher annual energy production** (69.86MWh/year) compared to the South scenario (69.04 MWh/year for 108 modules);
- (iv) The E-W oriented PV system has lower emissions because of the Aluminium structure (5100 and 9000 kg CO_2 -eq) for E-W and South orientation respectively.

Selecting the right design configuration is crucial for photovoltaic systems, as it impacts the potential, environment, and performance of various orientations.

THANK YOU

MULTUMESC