

Economic and carbon footprint assessment for energy upgrading of buildings. Scenarios for a combined warehouse and office building in Norway

Lars Gunnar Furelid Tellnes^{1,2}, Marius Birkeland, Anna-Lena Kjøniksen¹, Henrik Røer¹, Susana Garcia Sanfelix¹ ¹ Østfold University College, Norway; ² Technical University of Cartagena, Spain.

Tellnes and colleagues | Faculty of Computer Science, Engineering and Economics

Background

- New Energy Performance in Building Directive (EPBD) approved 2024
- Aims for triggering a renovation wave
- For non-residential buildings, it requires renovating the 16% worstperforming buildings by 2030
- Green finance and support is growing

Problem statement

What is the most beneficial I terms of carbon footprint and costs, to either renovate, build new or leave as is?

Can green finance and support change the benefit of each scenario?

Case building:

Floor area (office + warehouse): 1653 m²

Heated floor area (office): 735 m²

Location: Fredrikstad, Norway

Built: 1989

Tellnes and colleagues | Faculty of Computer Sciences, Engineering and Economics

Two methods applied – goals and software

Cost assessment

Goal to have a cost estimate according to common practice

Cost estimated by case study entrepreneur. LCC tool from Difi.

Carbon footprint

Goal to follow new building code requirements

Material amounts based on cost analysis. Material footprint from Reduzer software

Scope cost assessment and carbon footprint

- The cost included all cost to erect the buildings
- The carbon footprint follows requirements from new building code and scope of activities are less than the cost scope
- > Based on Level(s) GWP method
 - Simplification 1 energy focus

Table 3. Scope of materials and modules in carbonfootprint assessment	
Building part NS 3451	Modules EN 15978
21 Foundation	A1-A3 Product stage
22 Superstructure	A4 Transport to building
23 Outer walls	A5 Installation
24 Inner walls	B2 Maintenance
25 Slabs	B4 Replacement
26 Roofs	B6 Operational energy

Building data and assumptions

- > As is energy from 2023
- New built estimated from previous concept building
- > Rehabilitation
 - Keep main structure and rest as new
 - Assumes 30 % reduced operational energy
- > Three electricity mixes:
 - > Norwegian consumption
 - Future European
 - > Residual Norwegian

Tellnes and colleagues | Faculty of Computer Sciences, Engineering and Economics

Life cycle costing (LCC) parameters and software

- > 4 % discount rate
- > 1 NOK per kWh (0.1 EUR)
- 0.5 % green loan discount in new built and rehab
- 30 % of rehab investments supported from Government energy efficiency program (Enova)

[kg CO₂/m²/year]

Results: Carbon footprint of building

80

■ A1-A3 ■ A4 ■ A5 ■ B2-5 ■ B6 Tellnes and colleagues | Faculty of Computer Sciences, Engineering and Economics

Results: Cost assessment

Results: Influence of government support

Results: Higher electricity prices

Conclusions

- Carbon and costs estimates at conceptual level for commercial building
- Carbon footprint depends much on future electricity impacts assumed.
- Government support and electricity prices important to make reduction cost efficient, green finance less important
- > More detailed analysis should focus on:
 - > Detailed rehab scenario
 - Sensitivity of prices and interest rates. Also annual to hour rates.

Net-Zero Future 2024

Thank you!

lars.g.tellnes@hiof.no

References

Difi. LCC-tool. <u>https://anskaffelser.no/verktoy/maler/lcc-verktoy-alternativsvurderinger</u>

Reduzer. Carbon footprint tool. <u>https://reduzer.com/</u>

Tellnes, L. G. F., Koch, C., Torgersen, M., & Kjøniksen, A. L. (2023, June). Value capture from low embodied emissions of buildings-a business model innovation perspective. In *IOP Conference Series: Earth and Environmental Science* (Vol. 1196, No. 1, p. 012096). IOP Publishing.